
 INTERNATIONALIZATION IN GVIM

A PROJECT REPORT

 Submitted by

Ms. Nisha Keshav Chaudhari
Ms. Monali Eknath Chim

In partial fulfillment for the award of the degree

Of

B. Tech Computer Engineering

UNDER THE GUIDANCE OF

Prof. Abhijit A. M.
College Of Engineering, Pune

DEPARTMENT OF COMPUTER ENGINEERING

AND INFORMATION TECHNOLOGY,

COLLEGE OF ENGINEERING, PUNE.

2009-2010

 DEPARTMENT OF COMPUTERENGINEERING
 AND INFORMATION TECHNOLOGY,
 COLLEGE OF ENGINEERING PUNE

CERTIFICATE

 Certified that this project titled “INTERNATIONALIZATION

IN GVIM” has been successfully completed by “Ms. NISHA KESHAV

CHAUDHARI and Ms. MONALI EKNATH CHIM” and is approved

for the partial fulfillment of the requirements for the degree of “B. Tech.

Computer Engineering”.

 SIGNATURE SIGNATURE

PROF. ABHIJIT A. M. PROF. A. A. SAWANT
Department of Computer Engineering, Department of Computer Engineering,
College of Engineering College of Engineering,
Shivaji Nagar, Shivaji Nagar,
Pune- 411005 Pune- 411005

 i

 ACKNOWLEDGEMENT

We would like to thank our Project Guide, Prof. Abhijit A. M., for his

guidance, enthusiasm and inspiration during our complete project work. His helpful

insights helped us to use several methods for tracking problems.

We would like to thank Mr.Praveen Satpute (Redhat), for giving valuable

suggestions and guidance for our work.

 Thanking All,

Nisha Chaudhari

Monali Chim

 ii

 ABSTRACT

Today Information Technology is restricted to well English speaking people

only. So if we want IT to reach masses then use of local languages in IT is essential.

For using local languages Internationalization is must.

Internationalization is the process of designing a software for local languages

so that people can use software in their own language. Internationalization is done by

using Unicode.

GVim is an editor available on GNU/Linux and windows also. In GVim, there

are some rendering issues of Devanagari script on Linux platform. Devanagari vowels

do not get printed properly. We have fixed these problems to some extent.

 iii

 TABLE OF CONTENTS

 ACKNOWLEDGEMENT.. ii

 ABSTRACT.. iii

1. LIST OF TABLES.. 1

2. LIST OF FIGURES.. 2

3. LIST OF ABBREVIATIONS AND NOMENCLATURE................................... 3

4. INTRODUCTION... 5

5. LITERATURE SURVEY... 6

 5.1 Unicode... 6

 5.2 UTF-8.. 7

 5.3 UTF-16.. 7

 5.4 Pango... 9

6. SPECIFICATION... 10

 6.1 Problem definition... 10

 6.2 Software Requirement... 10

7. IMPLEMENTATION... 11

8. TESTING METHODOLOGIES... 16

9. CONCLUSION.. 18

10. FUTURE ENHANCEMENT... 19

 REFERENCES.. 20

1. LIST OF TABLES

1.1 The Unicode Standard, Version 5.2, Archived Code Charts………..………….....8

1

 2. LIST OF FIGURES

1.1 GVim before making changes.…………………..…………………………….....10

1.2 GVim after making changes….………………..…………………………………15

1.3 GVim after testing…………………….……..…………………………………...17

2

 3. LIST OF ABBREVIATIONS AND NOMENCLATURE

GVim

GVim is a GUI version of vim. Vim is an enhanced version of the Unix vi

editor.

GUI

A user interface based on graphics (icons and pictures and menus) instead of

text.

GTK (Gimp Tool Kit or GUI Tool Kit+)

 A library of object-oriented graphical interface elements for developing X

Window applications in C/C++, Python, Perl and other languages.

Vim

 Vim is a highly configurable text editor built to enable efficient text editing. It

is an improved version of the Vi editor distributed with most UNIX systems. We can

get the description of the Vim at www.vim.org.

Also, there is community for Vim developers at vim-dev@vim.org.

GDK

 GDK (GIMP Drawing Kit) is a computer graphics library that acts as a tool for

the low-level drawing and windowing functions provided by the underlying graphics

system.

Pango

Pango is open source software that seeks to create a software framework so

that international text characters can be electronically rendered.

3

Unicode

 The Unicode Standard is the universal character encoding standard used for

representation of text for computer processing. Unicode provides a consistent way of

encoding multilingual plain text making it easier to exchange text files internationally.

UTF-8

 UTF-8 stands for Unicode Transformation Format-8.

 UTF-8 encodes each Unicode character as a variable number of 1 to 4 octets,

where the number of octets depends on the integer value assigned to the Unicode

character.

UTF-16

 The encoding form maps each character to a sequence of 16-bit words.

Characters are known as code points and the 16-bit words are known as code units.

Glyph

 In information technology, a glyph (pronounced GLIHF; from a Greek word

meaning carving) is a graphic symbol that provides the appearance or form for a

character. A glyph can be an alphabetic or numeric font or some other symbol that

pictures an encoded character

4

4. INTRODUCTION

Today there are many applications that provide the feature of editing in local

language. Many of the applications successfully provide this feature but some

applications like GVim provide this feature partially that is they edit in local language

but with some problems of rendering, etc. In windows this problem of using local

language has been tried to be solved by using different softwares like Akriti, Shreelipi

etc but these softwares have created a new problem of standardization as Unicode is

not used in these softwares.

On Linux platform, this problem is solved by using Unicode support .Unicode

provides unique number for each character in the world. By using Unicode,

Internationalization work is done.

Internationalization term is frequently abbreviated to the i18n (where 18

stands for the number of letters between the first i and last n in internationalization).

I18N is needed in the following places.

1. Displaying characters for the users' native languages.

2. Inputting characters for the users' native languages.

3. Handling files written in popular encodings that are used for the users native
languages.

4. Using characters from the users' native languages for file names and other
items.

5. Printing out characters from the users' native languages.

6. Displaying messages by the program in the users' native languages.

5

 5. LITERATURE SURVEY

For modifying the code we need to study the following terms.

5.1 Unicode

Fundamentally, computers just deal with numbers. They store letters and other

characters by assigning a number for each one. Before Unicode was invented, there

were hundreds of different encoding systems for assigning these numbers.

These encoding systems also conflict with one another. That is, two encodings

can use the same number for two different characters, or use different numbers for the

same character. Any given computer (especially servers as they need to store data in

different encodings) needs to support many different encodings, yet whenever data is

passed between different encodings or platforms, that data always runs the risk of

corruption.

No single encoding could contain enough characters. Even for a single

language like English, no single encoding was adequate for all the letters,

punctuations, and technical symbols in common use.

Unicode provides a unique number for every character, no matter what the

platform, no matter what the program, no matter what the language. It is supported in

many operating systems, all modern browsers, and many other products.

Unicode enables a single software product or a single website to be used on

multiple platforms, languages and countries. It allows data to be transported through

many different systems without any changes.

6

5.2 UTF-8

UTF-8 stands for Unicode Transformation Format-8. It is an octet (8-bit)

encoding of Unicode characters. UTF-8 encodes each Unicode character as a variable

number of 1 to 4 octets, where the number of octets depends on the integer value

assigned to the Unicode character. It is an efficient encoding of Unicode documents

that use mostly US-ASCII characters because it represents each character in the range

U+0000 through U+007F as a single octet. UTF-8 is the default encoding for XML.

5.3 UTF-16:

In computing, UTF-16 (16-bit UCS/Unicode Transformation Format) is a

variable-length character encoding for Unicode, capable of encoding the entire

character set. The encoding form maps each character to a sequence of 16-bit words.

Characters are known as code points and the 16-bit words are known as code units.

All possible code points from U+0000 through U+10FFFF, except for the code points

U+D800–U+DFFF (which are not characters), are uniquely mapped by UTF-16

regardless of the code point's current or future character assignment or use.

 Table of Unicode Standard Chart for Devanagari is as shown below in Table 1.1:

7

8

5.4 Pango

Pango is a library for laying out and rendering of text, with an emphasis on

internationalization. Pango can be used anywhere when text layout is needed, though

most of the work on Pango so far has been done in the context of the GTK+ widget

toolkit. Pango forms the core of text and font handling for GTK+-2.x.

Pango is open source computing library used by software developers for

laying out and rendering text in high quality, emphasizing support for multilingual

text. Different font back-ends can be used, allowing cross-platform support; so that

Pango-rendered text will appear similar under different operating systems, such as

Linux, Apple's MacOS and Microsoft Windows.

Pango has been integrated into most Linux distributions. It also provides the

rendering for text in the Mozilla Firefox web browser.

The Pango project provides a highly modular framework for internationalized

text layout and rendering, with the ability to incrementally add support for both new

scripts for new font technologies and rendering systems.

We can also get detailed information about the pango at www.pango.org.

9

 6. SPECIFICATION

6.1 Problem definition

To solve rendering problem of Devanagari script in GVim Editor on Linux

platform.

These rendering problems can be seen in the following snapshot of Gvim. As

we can see Devanagari characters do not get printed properly especially vowels.

Figure 1.1

6.2 Software Requirement

Ubuntu 9.04

GVim Source Code

Pango Library

GTK Library

10

 7. IMPLEMENTATION

How to install GVim :

To implement the changes in GVim related to rendering of the Devanagari

script we need to go through following steps.

There are two types of packages for installing software in Ubuntu:

1. Debian package (.deb)

2. Source package (.tar.gz etc..)

No source files are there in Debian package.

We can install the software by configuring it using source package. These

source packages are in compressed form having extension like .tar.gz. We have to

extract this source package by using command

tar -xvzf <package name>

Then it will create a new folder containing extracted files. To install the GVim

we need to follow the steps given below:

Get the source code from the mercurial repository:

https://vim.googlecode.com/hg/

This repository is recommended because it contains all source files needed to

install GVim.

Then extract files as stated above.

Run the following commands to install GVim application:

1. To compile the GVim code

cd vim

cd src

configure

make

2. To install the VIM binaries in your path:

sudo make install

11

To run the GVim application use the command

 gvim or vim -g <filename>

Environment Settings:

Keyboard Layout:

 For writing in Devanagari script, we need to set keyboard layout to Devanagari

script.

 This is done as follows:

 1. Go to System->Preferences->Keyboard

 2. Select keyboard layout .Go to Add option.

 3. Then select country -> India and then select language.

 4. The Variant should be India or India Hindi Bolnagri.

GVim source code modifications:

GVim contains different files and folders and makefiles. We can make the

changes in GVim application by modifying files in src folder. This src folder contains

different c files, header files and makefile. The c files are of different types. Some

files are specific for GUI application of Vim. And some are common for GVim and

Vim. GUI specific file starts with “gui” in their name.

In GUI files functions of pango are used to display the characters on the

screen. By making changes in the functions of the GUI files we can change the

display of the characters. So changes are done in GUI files.

File named gui.c contains the structure of all the GUI information.

gui_gtk_x11.c file contains various functions that are used to display characters

on the screen. Many pango functions are used here. It helps to display characters from

different scripts. GVim gets the different script characters in Unicode format and then

12

it sends those Unicode to pango then pango retrieves the glyph for that character. The

glyph is then passed to GVim and then it adjusts the glyph by using rendering engine

pango and then displays on the screen.

Following changes are made:

1. Changes are made in the function called

setup_zero_width_cluster in gui_gtk_x11.c file. x_offset of glyph

is set to zero here, previously it was -8 since glyph->geometry.x_offset =
- width + MAX(0, width - last_cluster_width) / 2;

Here width is 8 and (MAX(0, width - last_cluster_width) /
2) is 0. Since x_offset of glyph was -8 previously it prints the composing

character previous to the character where it should actually print.

If we change x_offset of the glyph to +8, it prints composing character

next to the character where it should actually print.

2. In the same function one pango function is called named

pango_font_get_glyph_extents. This function gets the logical and ink

extents of a glyph within a font. The coordinate system for each rectangle has its

origin at the base line and horizontal origin of the character with increasing

coordinates extending to the right and down.

The units of the rectangles of the glyph are in 1/PANGO_SCALE of a device

unit. This function aligns the characters to the origin of the rectangle of each

character. Because of this composing characters are getting printed slightly down

where it should actually get printed. We don't need this for Devanagari script. It may

be for some other scripts. So if we don't call this function we can fix this problem. It

prints the Devanagari characters properly.

13

3. In the same file gui_gtk_x11.c, in the function

gui_gtk2_draw_string, there was a same problem (as mentioned above in the

first point) of x_offset of the glyph. So we have increased x_offset of the

glyph so that it will print properly. It has been given the value of width of character.

4. In function draw_glyph_string, function is called to define the

rectangle and then to draw the glyph in that rectangle by calling function

gdk_draw_glyphs. In this function value of TEXT_X(col) is passed. TEXT_X
converts character column into X pixel coordinate for drawing strings. We have

shifted the glyph in defined rectangle to the left by 2.

If we don't shift to the left, then composing character enters the rectangle of

the next character and the next character doesn't get printed properly. We solved this

problem by shifting glyph to the left.

5. ि� was getting printed to the next character. So to fix this problem we have

checked that the character is ि� or not by using the Unicode 0x93F. Then according to

that we changed the x_offset of this character in the gui_gtk_x11.c file.

6. When we made all these changes, other scripts were getting affected by this

modified code. So we checked the input characters if they are Devanagari characters

or not. We have checked whether the input characters are in the range 0x900 – 0x97F.

Hence the changes will not affect rendering of other languages like Arabic, Tamil,

Telugu, English, etc.

Diff of the old code and the new source code of GVim is published at

gvim-dev@blogspot.com.

14

mailto:gvim-dev@blogspot.com

After making changes we can see that the Devanagari script gets printed

properly as shown in the below snapshot of the GVim:

Figure 1.2

15

 8. TESTING METHODOLOGIES AND RESULTS

Testing performed:

 In simple words, testing is the process of verification of the code to check
whether we are getting the desired output for each and every valid input.

We have done changes in GVim source code and these changes need to be
tested.

When we input ो� after some consonant, it was printing ो� slightly down. We
have modified the code and now it prints correctly. We have shifted glyph of each
Devanagari character to the left to display Devanagari characters properly. We
changed the offset for displaying character 0x93F (िो). We have done these changes
only for Devanagari script.

After modifying the code, we compiled the code and ran the application.

Following are the test cases:

1. If we first type प, then िो then it should output िप not प िो. For every

character in Devanagari, it should output िो to the desired character not the

next character.

2. Then, if we type English characters, there should be no change in the display

of those characters.

3. If we type प and ो� then it should print प�. Same is the case for all vowels of

the Devanagari script.

4. Also when we input vowel, the next character to it should get printed

completely. It should not overwrite the next character or next character should

not get printed partially.

16

Screen shot of the tested GVim code is as follows:

Figure 1.3

17

 9. CONCLUSION

We have solved some rendering problems of Devanagari script in Gvim on

Linux platform. This will be very useful to those people who want to use Devanagari

script for editing in GVim. It will help IT to reach common people.

18

 10. FUTURE ENHANCEMENT

1. We can make changes in the code so that we can print the complicated

combining characters using ो�.

2. We can improve the display of characters ksha, pra, dnya.

3. The character ो� should get printed at proper place when we print it after र.

4. Also we can create more spacing between the characters for better display.

19

 REFERENCES

1. http://en.wikipedia.org/

2. http ://www.pango.org/

3. http://www.vim.org/

 4. Mercurial Repository https://vim.googlecode.com/hg/

5. The Unicode Standard, Version 5.2, Archived Code Charts

6. vim-dev@vim.org

 Community for the Vim Development

20

mailto:vim-dev@vim.org
https://vim.googlecode.com/hg/
http://www.vim.org/
http://www.pango.org/
http://www.pango.org/
http://en.wikipedia.org/

	 INTERNATIONALIZATION IN GVIM
	A PROJECT REPORT
	 Submitted by
	B. Tech Computer Engineering
	AND INFORMATION TECHNOLOGY,

